ACHIEVEMENTS AND PLANS

V. Beschkov, El. Razkazova-Velkova, M. Martinov

Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

Timisoara, November 4/6, 2013

GOALS

- To concentrate the sulfide ions for the needs of the fuel cell;
- To develop appropriate aeration system; mathematical modeling;
- To test different electrodes and techniques for high efficiency sulfide-driven fuel cell;
- To decide whether it is suitable to extract rare metals from the sea water.

Sulfide concentration

- By ion-exchange resin; eluation by NaOH or NaCl; or the resin was put into the anodic compartment of the fuel cell.
- By activated carbon.

- In both cases sulfides have been oxidized on the support to sulfite and sulfate.
- We hope, the sea water do not contain oxygen at large depths.

Fuel cell experiments

- Different electrodes for sulfide compartments graphite, cobalt ions, embedded into GAC; zirconia; La-Ni-alloys;
- Different construction of the cell; electrode area in the oxygen compartment (GAC particles)
- Different membranes (OH-, H+) —depending on the electrode processes.

Aeration system; fuel cell

Electrode processes

- Anode: $S_2^- + 4H_2O 8e = SO_4^{2-} + 8H^+, E_0 = 0.149 \text{ V}$
- Cathode: $2O_2 + 8H^+ + 8e^- = 4H_2O$, $E_0 = 1.229 \text{ V}$

The net reaction: $S_2^- + 2O_2 = SO_4^{2-}$

Anode: $S_2^- + 6OH^- - 6e^- = SO_3^{2-} + 3H_2O$, $E_0^- = -0.61 \text{ V}$

$$SO_3^{2-}+2OH^- - 2e^- = SO_4^{2-} + H_2O$$

 $E_0 = -0.90 \text{ V}$; Total: -0.706 V .

Cathode: $2O_2 + 4H_2O + 8e^- = 8OH^-$, $E_0 = 0.401 \text{ V}$

Spontaneous electrode reactions do not fit the required ones!

Reversible reaction	Electrode potential [V]
$2SO_3^{2-} + 2H_2O + 2e = S_2O_4^{2-} + 4OH^{-}$	-1.12
$SO_4^{2-} + H_2O + 2e = SO_3^{2-} + 2OH^{-}$	-0.93
$SO_3^{2-} + 3H_2O + 4e = S + 6OH^{-}$	-0.66
$S2^{2^{2}} + 2e = 2S^{2^{2}}$	-0.524
$S4^{2^{2}} + 2e = S^{2^{2}} + S3^{2^{2}}$	-0.52
$2S_3^{2-} + 2e = 3S_2^{2-}$	-0.506
$S_3^{2^-} + 2e = S_2^{2^-} + S_2^{2^-}$	-0.49
$S + 2e = S^{2-}$	-0.48
$3S4^{2-} + 2e = 4S3^{2-}$	-0.478
$4S5^{2-} + 2e = 5S4^{2-}$	-0.441
$5S + 2e = S5^{2-}$	-0.34
$4S + 2e = S4^{2}$	-0.33
$2SO_4^{2-} + 4H^+ + 2e = S_2O_6^{2-} + 2H_2O$	-0.22
$2H_2SO_3(aq) + H^+ 2e = HS_2O^{4-} + 2H_2O$	-0.082
$S + H^{+} + 2e = HS^{-}$	-0.065
$2HSO_3^{-} + 2H^{+} + 2e = S_2O_4^{-2} + 2H_2O$	-0.013
$S_2O_3^{2-} + 6H^+ + 8e = 2S^{2-} + 3H_2O$	-0.006
$HSO_3^- + 5H^+ + 4e = S + 3H_2O$	0

Continued

19	$S_5^{2-} + 5H^+ + 8e = 5HS^-$	0.003		
20	$S_2O_6^{2^2} + 2e = 2SO_3^{2^2}$	0.026		
21	$S4^{2^{-}} + 4H^{+} + 6e = 4HS^{-}$	0.033		
22	$2HSO_3^- + 3H^+ + 2e = HS_2O_4^- + 2H_2O$	0.06		
23	$S4O6^{2^{2}} + 2e = 2S2O3^{2^{2}}$	0.08		
24	$S_3^{2-} + 3H^+ + 4e = 3HS^-$	0.097		
25	$SO_4^{2-} + 4H^+ + 2e = SO_2(g) + 2H_2O$	0.138		
26	$S(romb) + 2H^{+} + 2e = H_2S (aq)$	0.142		
27	$SO_4^{2-} + 8H^+ + 8e = S^{2-} + 4H_2O$	0.149		
28	$SO_4^{2-} + 4H^+ + 2e = H_2SO_3 (aq) + H_2O$	0.172		
29	$S_2O_3^{2^2} + 8H^+ + 8e = 2HS^- + 3H_2O$	0.2		
		· · · · · · · · · · · · · · · · · · ·		

Maintenance of the required potential

- Suitable catalyst or
- Potentiostatic maintenance;
- Combination of both.

■ Catalysts: Co-doped GAC; GAC

Perovskite(La_{1.3}Sr_{0.7}NiO₄); La-Ni-alloys; zirconia

VOLT-AMPERIC CHARACTERISTICS – COMPARISON (65 mg/l SULFIDE; 20°C)

Polarization curve (Co-spinel)

Tafel's plot-activation energy

$$S_2^- + 4H_2O - 8e - SO_4^{2-} + 8H^+, E_0 = 0.149 \text{ V}$$

R=0.29 Ω;

$$i_0 = 89 \text{ mA}$$

Arrhenius plot; 5 to 25°C

Ea=20.4 kcal/mol or 85.18 kJ/mol

A SULFIDE-DRIVEN FUEL CELL-BATCH PROCESS;GRAPHITE ELECTRODES; NO CATALYST 970 mg/l sulfide

For 4 hours:

2.1 J 4.57 kJ stoichiometrically

Parallel competitive processes

■ How to overcome this?

- To stop the parasite reaction (purging with nitrogen);
- Select suitable catalyst
- To enhance the anode process by suitable potential.

THE CATALYST IN A SULFIDE-DRIVEN FUEL CELL-BATCH PROCESS; anode potential: -1.0 V/SCE

 $S_2^- + 2O_2^- 8e^- = SO_4^{2-}, E_0^- = -0.705 \text{ V}$

Time, h	Produced energy, J	Stoichiometric yield, J	Product
1	84.2	110.4	sulfites
2.5	171.5	172.4	sulfates

THE CATALYST IN A SULFIDE-DRIVEN FUEL CELL-BATCH PROCESS; anode potential: -1.0 V/SCE

THE CATALYST IN A SULFIDE-DRIVEN FUEL CELL- CONTINUOUS PROCESS (0.035 l/);

Time,h

THE CATALYST IN A SULFIDE-DRIVEN FUEL CELL- CONTINUOUS PROCESS (0.12 l/h);

anode potential: -0.1 V/SCE

S2- + 4H2O - 8e- = SO_4^{2-} + 8H+, Eo=0.149 V

	Rate of sulfide/sulfate conversion, mg/h			
Time, h	Faraday's law	Stoichiometric	Ratio	
0	1.06	2.29	0.46	
1.5	0.883	0.647	1.365	
3	0.872	0.976	0.893	
Average	0.938	1.304	0.72	

THE CATALYST IN A SULFIDE-DRIVEN FUEL CELL-CONTINUOUS PROCESS (0.12 l/h);

anode potential: -0.1 V/SCE

S2- + 4H2O - 8e- = SO_4^{2-} + 8H+, Eo=0.149 V

	Rate of sulfide/sulfite conversion, mg/h				Rate of sulfide/ <mark>sulfate</mark> conversion, mg/h		
Time, h	Faraday's law	Stoichiometric	Ratio	Time, h	Faraday's law	Stoichiometric	Ratio
1	0.354	0.4212	0.84	1	0.2656	0.4212	0.63
2	0.3625	1.093	0.332	2	0.2719	1.093	0.25
3	0.394	0.6588	0.60	3	0.2955	0.6588	0.4485
Average	0.37	0.7243	0.59	Average	0.2776	0.7243	0.443

How to continue?

- To improve the catalyst;
- To avoid oxygen in the sulfide compartment;
- To reduce the cell ohmic resistance drastically (high salinity, better ion exchange membrane); reduction of the ohmic resistance of the electrodes;
- To increase the surface/volume ratio.

General issues for discussion

- To select the best catalyst (if any)
- To select ion-exchange resin or else for sulfide concentration;
- To check the feasibility for rare earths extraction;
- To compose the pilot-plant equipment (including hydrogen production);
- To outline the terms and dead lines for these activities. To plan them.

THANK YOU FOR THE ATTENTION!